Skip to main content

Treasury Bonds

Treasury Bonds are medium to long-term debt securities that carry an annual rate of interest fixed over the life of the security, payable semi-annually.

Coupon and Maturity (click for term sheet) Outstanding
(face value, AUD million)
ISIN
0.25% 21 November 2025 39,200 AU0000095457
4.25% 21 April 2026 39,600 AU000XCLWAI8
0.50% 21 September 2026 39,400 AU0000106411
4.75% 21 April 2027 39,400 AU3TB0000135
2.75% 21 November 2027 36,000 AU000XCLWAQ1
2.25% 21 May 2028 35,900 AU000XCLWAR9
2.75% 21 November 2028 41,500 AU000XCLWAU3
3.25% 21 April 2029 41,200 AU3TB0000150
2.75% 21 November 2029 40,100 AU000XCLWAX7
2.50% 21 May 2030 41,000 AU0000013740
1.00% 21 December 2030 40,200 AU0000087454
1.50% 21 June 2031 41,500 AU0000047003
1.00% 21 November 2031 42,400 AU0000101792
1.25% 21 May 2032 40,000 AU0000075681
1.75% 21 November 2032 29,700 AU0000143901
4.50% 21 April 2033 26,700 AU000XCLWAG2
3.00% 21 November 2033 25,400 AU0000217101
3.75% 21 May 2034 25,000 AU0000249302
4.25% 21 June 2034 8,600 AU3TB0000200
3.50% 21 December 2034 27,000 AU0000274706
2.75% 21 June 2035 24,450 AU000XCLWAM0
4.25% 21 December 2035 15,100 AU0000345241
4.25% 21 March 2036 15,800 AU0000381832
3.75% 21 April 2037 18,000 AU3TB0000192
3.25% 21 June 2039 10,800 AU000XCLWAP3
2.75% 21 May 2041 15,600 AU0000018442
3.00% 21 March 2047 14,200 AU000XCLWAS7
1.75% 21 June 2051 20,200 AU0000097495
4.75% 21 June 2054 9,200 AU0000300535

Treasury Bonds on issue as at 16 May 2025. This table is updated weekly.

The Information Memorandum for Treasury Bonds (PDF) provides detailed information about Treasury Bonds including the terms and conditions of their issue.

Similar to most fixed income securities in Australia, Treasury Bonds are quoted and traded on a yield to maturity basis rather than on a price basis. This means the price is calculated by inputting the yield into the appropriate pricing formula.

The price per $100 face value is calculated using the following pricing formulae:

(1) Basic formula 

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}} \right) + 100 v^{n} \right)\)

 

(2) Ex-interest formula 

\(\Large P = v^\frac{f}{d}\left(g \require{enclose}a_{\enclose{actuarial}{n}} + 100 v^{n} \right)\)

The ex-interest period for Treasury Bonds is seven calendar days. With ex-interest Treasury Bonds the next coupon payment is not payable to a purchaser of the bonds. In this case, calculation of an ex-interest price is effected by the removal of the '\( 1 \)' from the term:

\( \large 1+\require{enclose}a_{\enclose{actuarial}{n}}\)

in formula \( (1) \), thereby adjusting for the fact that the purchaser will not receive a coupon payment at the next interest payment date.

 

(3) Near-maturing bonds formula (between the record date for the second last coupon and the record date for the final coupon)

\(\Large P = \LARGE \frac{100 + g}{1 + \left(\frac{f}{365}\right) i}\)

When a Treasury Bond goes ex-interest for the second last time it is treated as a special case. In this case formula (3) applies up until the record date for the final interest payment. There may be a slight discontinuity in the progress of the price of the bond around the time the bond goes ex-interest for the second last time but market participants can, if they wish, allow for this in their trading.

Where the maturity date coincides with a weekend or public holiday, the commonly accepted practice is to price near-maturing Treasury Bonds according to the actual date the principal and final interest are paid (and not the nominal maturity date).

 

(4) Near-maturing bonds formula (between the record date for the final coupon and maturity of the bond)

\(\Large P = \LARGE \frac{100}{1 + \left(\frac{f}{365}\right) i}\)

When a Treasury Bond goes ex-interest for the last time it is treated as a special case. In this case formula (4) applies from the time the bond goes ex-interest for the final time.

Where the maturity date coincides with a weekend or public holiday, the commonly accepted practice is to price near-maturing Treasury Bonds according to the actual date the principal and final interest are paid (and not the nominal maturity date).

 

In these formulae:

\(\large P=\) the price per $100 face value. \( P \) is rounded to three decimal places in formulae (1) and (2), and unrounded in formulae (3) and (4).

\(\large i=\) the annual percentage yield to maturity divided by 200 in formulae (1) and (2), or the annual percentage yield to maturity divided by 100 in formula (3) and (4).

\(\large v=\LARGE\frac{1}{1 + i} \)

\(\large f=\) the number of days from the date of settlement to the next interest payment date in formulae (1) and (2) or to the maturity date in formulae (3) and (4). In formulae (3) and (4), if the maturity date falls on a non-business day, the next good business day (as defined in the Information Memorandum) is used in the calculation of \(f\).

\(\large d=\) the number of days in the half year ending on the next interest payment date.

\(\large g=\) the half-yearly rate of coupon payment per $100 face value.

\(\large n=\) the term in half years from the next interest payment date to maturity.

\(\large \require{enclose}a_{\enclose{actuarial}{n}}=\large v + v^2 + ... + v^n = \LARGE \frac{1 - v^n}{i}\) \( . \mathrm{Except \, if\ \,} i = 0 \ \mathrm{\,then\,}\ \require{enclose}a_{\enclose{actuarial}{n}} = n \)

 

Worked Examples

(1) Basic formula 

Consider the 2.75% 21 November 2029 Treasury Bond, with a yield to maturity of 1.10 per cent and settlement date of 12 September 2019.

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}} \right) + 100 v^{n} \right)\)

where:

       \( \large\ i=\Large\frac{1.10}{200}= \) \(\large 0.0055\)

       \( \large\ v=\Large\frac{1}{1+i}=\frac{1}{1+0.0055}= \) \(\large 0.99453\)

       \(\large \require{enclose}a_{\enclose{actuarial}{n}}=\Large \frac{1 - v^n}{i}=\frac{1-0.99453^{20}}{0.0055}=\)\(\large 18.8904\)

       \( \large\ f = 70 \), the number of days from 12 September 2019 to 21 November 2019

       \( \large\ d = 184 \), the number of days from 21 May 2019 to 21 November 2019

       \( \large\ g =\Large\frac{2.75}{2}= \) \(\large 1.375\)

       \( \large\ n = 20\), the number of half years from 21 November 2019 to 21 November 2029

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}} \right) + 100 v^{n} \right) = 0.99453^\frac{70}{184}\left(1.375 \left( 1 + 18.8904\right) + 100\times0.99453^{20} \right)\)

\(\Large P = 116.716\)

 

(2) Ex-Interest formula 

Consider the 2.50% 21 May 2030 Treasury Bond, with a yield to maturity of 1.10 per cent and settlement date of 15 November 2019.

\(\Large P = v^\frac{f}{d}\left(g \left( \require{enclose}a_{\enclose{actuarial}{n}} \right) + 100 v^{n} \right)\)

where:

       \( \large\ i=\Large\frac{1.10}{200}= \) \(\large 0.0055\)

       \( \large\ v=\Large\frac{1}{1+i}=\frac{1}{1+0.0055}= \) \(\large 0.99453\)

       \(\large \require{enclose}a_{\enclose{actuarial}{n}}=\Large \frac{1 - v^n}{i}=\frac{1-0.99453^{21}}{0.0055}=\)\(\large 19.78135\)

       \( \large\ f = 6 \), the number of days from 15 November 2019 to 21 November 2019

       \( \large\ d = 184 \), the number of days from 21 May 2019 to 21 November 2019

       \( \large\ g =\Large\frac{2.50}{2}= \) \(\large 1.25\)

       \( \large\ n = 21\), the number of half years from 21 November 2019 to 21 May 2030

\(\Large P = v^\frac{f}{d}\left(g \left( \require{enclose}a_{\enclose{actuarial}{n}} \right) + 100 v^{n} \right) = 0.99453^\frac{6}{184}\left(1.25 \left( 19.78135\right) + 100\times0.99453^{21} \right)\)

\(\Large P = 113.827\)

 

(3) Near-maturing bonds formula (between the record date for the second last coupon and the record date for the final coupon) 

Consider the 2.75% 21 October 2019 Treasury Bond, with a yield to maturity of 1.00 per cent and settlement date of 26 September 2019.

\(\Large P = \LARGE \frac{100 + g}{1 + \left(\frac{f}{365}\right) i}\)

where:

       \( \large\ i=\Large\frac{1.00}{100}= \) \(\large 0.01\)

       \( \large\ f = 25 \), the number of days from 26 September 2019 to 21 October 2019

       \( \large\ g =\Large\frac{2.75}{2}= \) \(\large 1.375\)

\(\Large P = \LARGE \frac{100 + g}{1 + \left(\frac{f}{365}\right) i}=\frac{100+1.375}{1+\left(\frac{25}{365}\right) \times0.01}\)

\(\Large P = 101.305613\)

 

(4) Near-maturing bonds formula (between the record date for the final coupon and maturity of the bond)

Consider the 2.75% 21 October 2019 Treasury Bond, with a yield to maturity of 1.00 per cent and settlement date of 16 October 2019.

\(\Large P = \LARGE \frac{100}{1 + \left(\frac{f}{365}\right) i}\)

where:

       \( \large\ i=\Large\frac{1.00}{100}= \) \(\large 0.01\)

       \( \large\ f = 5 \), the number of days from 16 October 2019 to 21 October 2019

       \(\Large P = \LARGE \frac{100}{1 + \left(\frac{f}{365}\right) i}=\frac{100}{1+\left(\frac{5}{365}\right) \times0.01}\)

\(\Large P = 99.986303\)

 

Record Date Examples

Example 1

The 2.25% 21 May 2028 Treasury Bond makes a Coupon Interest Payment on Tuesday, 21 May 2024. The Record Date for this Coupon Interest Payment is Monday, 13 May 2024. 

Example 2

The 4.25% 21 April 2026 Treasury Bond makes a Coupon Interest Payment on Monday, 21 October 2024. The Record Date for this Coupon Interest Payment is Friday, 11 October 2024 (ten days prior to the Coupon Interest Payment Date, since the date eight days prior to the Coupon Interest Payment Date falls on a weekend).

Market makers

There is an active secondary market for Treasury Bonds. These institutions (listed alphabetically) have indicated that they make markets in Treasury Bonds. The level of activity can vary between institutions.

ANZ logo
Australia and New Zealand Banking Group Limited
Sydney: +61 2 8037 0220 
Singapore: +65 6681 8862
London: +44 20 3229 2070
NYC: +1 917 915 8260
Barrenjoey logo
Barrenjoey
Sydney: +61 2 9903 6777
Abu Dhabi: +971 2 565 9322
BofA Securities logo
BofA Securities
Sydney: +61 2 9226 5294
London: +44 20 7995 5605
BNP Paribas logo
BNP Paribas
Sydney: +61 2 9025 5011
Singapore: +65 6210 3390
CBA logo
Commonwealth Bank of Australia
Sydney: +61 2 9117 0020
Singapore: +65 6032 3809
London:+44 20 7329 6444 
DB logo
Deutsche Bank AG
Sydney: +61 2 8258 1444
London: +44 20 75471931
Tokyo: +81 3 51566195
HSBC logo
HSBC
Sydney: +61 2 9255 2022
HK: +852 2822 1930
JPM logo
J.P. Morgan
Sydney: +61 2 9003 7933
London: +44 20 7134 0194
Mizuho
Mizuho Securities Asia Limited
Singapore: +65 6603 5621
London: +44 20 7090 6347
NAB logo
National Australia Bank Limited
Sydney: +61 2 9295 1166
London: +44 20 7726 2747
Nomura logo
Nomura
Sydney: +61 2 8062 8607
London: +44 20 7103 0025
RBC
RBC Capital Markets
Sydney: +61 2 9033 3222
London: +44 20 7029 0472
TD logo
TD Securities
Australia: 1800 646 497
NYC: +1 212 8277301
Singapore: +65 6500 8010
London: +44 20 7997 1980
UBS logo
UBS AG
Sydney: +61 2 9324 2222
London: +44 20 7567 3645
Westpac logo
Westpac Banking Corporation
Sydney: +61 2 8204 2711
Singapore: +65 6309 3877
London: +44 20 7621 7620
NYC: +1 212 5511806